Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

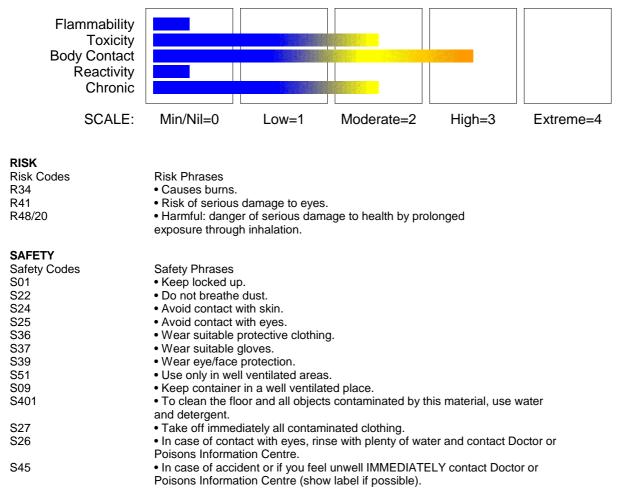
PRODUCT NAME

KERNEOS FLASHCRETE

PRODUCT USE

Used according to manufacturer's directions.

SUPPLIER


Company: ParexGroup Pty Ltd Address: 67 Elizabeth Street Wetherill Park NSW, 2164 Australia Telephone: +61 2 9616 3000 Emergency Tel:**1800 039 008** Fax: +61 2 9725 5551 Email: marketing@davco.com.au Website: www.davco.com.au

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

CHEMWATCH HAZARD RATINGS

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAMECAS Fgraded sand14808portland cement65997calcium aluminate cement65997	-60-7. 60-70 -15-1 25-30	
--	-----------------------------	--

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Centre or a doctor at once.

- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.

- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.

- Transport to hospital or doctor without delay.

SKIN

If skin or hair contact occurs:

- Immediately flush body and clothes with large amounts of water, using safety shower if available.

- Quickly remove all contaminated clothing, including footwear.

- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.

- Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.

- Lay patient down. Keep warm and rested.

- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.

- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.

- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

• When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.

- When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.

- Alert Fire Brigade and tell them location and nature of hazard.

- Wear breathing apparatus plus protective gloves in the event of a fire.

- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.

FIRE/EXPLOSION HAZARD

Non combustible.

- Not considered a significant fire risk, however containers may burn, silicon dioxide (SiO2).

When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

None known.

HAZCHEM None

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

SUITABLE CONTAINER

Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.

NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse.

STORAGE INCOMPATIBILITY

- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

- The following materials had no OELs on our records
- graded sand:
- calcium aluminate cement:

CAS:14808- 60- 7 CAS:65997- 16- 2 CAS:12042- 68- 1

MATERIAL DATA

CALCIUM ALUMINATE CEMENT: KERNEOS FLASHCRETE:

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition.

PORTLAND CEMENT:

NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans.

KERNEOS FLASHCRETE:

PORTLAND CEMENT:

for calcium silicate:

containing no asbestos and <1% crystalline silica

ES TWA: 10 mg/m3 inspirable dust

TLV TWA: 10 mg/m3 total dust (synthetic nonfibrous) A4

Although in vitro studies indicate that calcium silicate is more toxic than substances described as "nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m3 are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth.

KERNEOS FLASHCRETE:

PORTLAND CEMENT:

■ The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 µm (+-) 0.3 µm and with a geometric standard deviation of 1.5 µm (+-) 0.1 µm, i.e..generally less than 5 µm.

KERNEOS FLASHCRETE:

■ Because the margin of safety of the quartz TLV is not known with certainty and given the associated link between silicosis and lung cancer it is recommended that quartz concentrations be maintained as far below the TLV as prudent practices will allow.

GRADED SAND:

NOTE: This product contains negligible amount of respirable dust.

PORTLAND CEMENT:

For calcium oxide:

The TLV-TWA is thought to be protective against undue irritation and is analogous to that recommended for sodium hydroxide. Portland cement is considered to be a nuisance dust that does not cause fibrosis and has little potential to induce adverse effects on the lung.

CALCIUM ALUMINATE CEMENT:

■ For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

PERSONAL PROTECTION

RESPIRATOR

•Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

Chemical goggles.

- Full face shield may be required for supplementary but never for primary protection of eyes

- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

■ NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of the suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.

ENGINEERING CONTROLS

• Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Dark-greyish powder with a cement-like odour; insoluble in water.

PHYSICAL PROPERTIES

Does not mix with water. Sinks in water.

State Melting Range (°C) Boiling Range (°C) Flash Point (°C) Decomposition Temp (°C) Autoignition Temp (°C) Upper Explosive Limit (%) Lower Explosive Limit (%)

Volatile Component (%vol)

Divided Solid Not Available Not Available Not Applicable Not Available Not Applicable Not Applicable Not Applicable

Not Applicable

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY

Presence of incompatible materials.

- Product is considered stable.

- Hazardous polymerisation will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract.

EYE

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.

If applied to the eyes, this material causes severe eye damage.

continued...

Molecular Weight Viscosity Solubility in water (g/L) pH (1% solution) pH (as supplied) Vapour Pressure (kPa) Specific Gravity (water=1) Relative Vapour Density (air=1) Evaporation Rate Not Applicable Not Applicable I mmiscible Not Applica ble Not Applicable Not Applicable 1.3 approx. Not Applicable

Not Applicable

SKIN

The material can produce chemical burns following direct contact with the skin.

Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation.

Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Effects on lungs are significantly enhanced in the presence of respirableparticles.

Acute silicosis occurs under conditions of extremely high silica dust exposure particularly when the particle size of the dust is small. The disease is rapidly progressive and spreads widely through the lungs within months of the initial exposure and causing death within 1 to 2 years.

CHRONIC HEALTH EFFECTS

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Harmful: danger of serious damage to health by prolonged exposure through inhalation.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. This has been demonstrated via both short- and long-term experimentation.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm.

Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos.<</>

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections

Repeated exposures, in an occupational setting, to high levels of fine- divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect.

TOXICITY AND IRRITATION

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound.

CARCINOGEN

graded sand

International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs

Group

1

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity Ingredient

Persistence: Water/Soil Persistence: Air

Bioaccumulation

Mobility

graded sand	No Data	No Data	No Data	No Data
	Available	Available	Available	Available
portland cement	No Data	No Data	No Data	No Data
	Available	Available	Available	Available
calcium aluminate cement	No Data	No Data	No Data	No Data
	Available	Available	Available	Available

Section 13 - DISPOSAL CONSIDERATIONS

• Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction.

- DO NOT allow wash water from cleaning or process equipment to enter drains.

- It may be necessary to collect all wash water for treatment before disposal.

- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.

- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: ADG7, UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

Indications of Danger:

С

POISONS SCHEDULE None

REGULATIONS

Regulations for ingredients

No data for Kerneos Flashcrete (CW: 8178-58)

Section 16 - OTHER INFORMATION

INGREDIENTS WITH MULTIPLE CAS NUMBERS

Ingredient Name calcium aluminate cement

CAS 65997- 16- 2, 12042- 68- 1

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or

continued...

Corrosive

criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 12-Dec-2012 Print Date: 12-Dec-2012

This is the end of the MSDS.